

The charges $5\mu\text{C}$, $-2\mu\text{C}$, $3\mu\text{C}$ and $-9\mu\text{C}$ are placed at the corners A, B, C and D of a square ABCD of side 1 m . The electric potential at the centre of the square is A) -27 kV B) $-27\sqrt{2}\text{ kV}$ C) -90 kV D) zero

Solution.

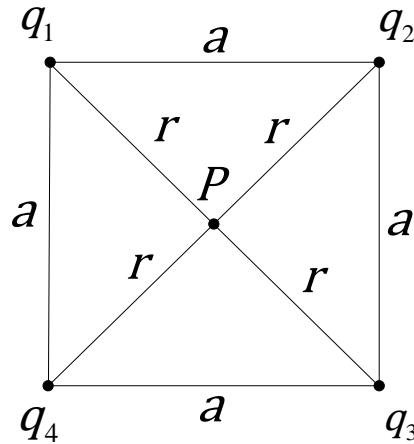


Figure 1

We denote: $q_1 = 5\mu\text{C}$, $q_2 = -2\mu\text{C}$, $q_3 = 3\mu\text{C}$, $q_4 = -9\mu\text{C}$, $a = 1\text{ m}$, r is half the length of the diagonal of the square, P is the center of the square. According to the Pythagorean theorem we find r :

$$2r = \sqrt{a^2 + a^2} = a\sqrt{2}; \quad r = \frac{a}{\sqrt{2}}.$$

Find the electric potential at the center of the square (φ_p):

$$\varphi_p = \frac{kq_1}{r} + \frac{kq_2}{r} + \frac{kq_3}{r} + \frac{kq_4}{r} = \frac{k\sqrt{2}(q_1 + q_2 + q_3 + q_4)}{a} = -27\sqrt{2}\text{ kV},$$

where $k = 9 \cdot 10^9 \frac{\text{N} \cdot \text{m}^2}{\text{C}^2}$ is Coulomb's constant.

Answer: B.