

The half life of radon is 3.80 days. What would be its decay constant?

Solution:

Decay equation:

$$N(t) = N_0 \cdot e^{-\lambda t}$$

$N(t)$ - the quantity at time t

N_0 = $N(0)$ is the initial quantity, i.e. the quantity at time $t = 0$.

λ - decay constant

Time required for the decaying quantity to fall to one half of its initial value:

$$t_{\frac{1}{2}} = \frac{\ln 2}{\lambda} = 3.80 \text{ days}$$

Also we need to convert days in seconds.

$$1 \text{ day} = 24 \text{ hours} = 24 \cdot 60 \text{ minutes} = 24 \cdot 60 \cdot 60 \text{ seconds}$$

$$\lambda = \frac{\ln 2}{t_{\frac{1}{2}}} = \frac{0,69}{3.80 \cdot 24 \cdot 60 \cdot 60} = \frac{0,69}{328320} = 2,1 \cdot 10^{-6}$$

Answer:

$$\text{Decay constant} = 2,1 \cdot 10^{-6}$$