

The distance travelled by a boy in the n th second is given by the expression $(2+3n)$. find the initial velocity and the acceleration and also find final velocity in 2 second?

By definition:

$$v = \frac{\Delta l}{\Delta t}$$

Δl – distance travelled in time Δt

In our case, distance travelled by a boy in the n th second is given by the expression $(2+3n)$, so

$$v(n) = \frac{2+3n}{1} = 2 + 3n$$

$v(n)$ – average velocity during n th second.

Acceleration equals:

$$a = \frac{\Delta v}{\Delta t} = \frac{v(n+1) - v(n)}{n+1 - n} = 2 + 3(n+1) - (2 + 3n) = 3$$

Answer: Acceleration equals $3 \frac{\text{units}}{\text{second}^2}$.

Average velocity during first second equals:

$$v(1) = 2 + 3 = 5$$

And he moved with acceleration $a = 3$.

$$v_0 + 3 * 1 = v_1$$

v_0 - the initial velocity

v_1 - the final velocity in 1st second

He moved with constant acceleration, so:

$$v(1) = \frac{v_0 + v_1}{2} = 5$$

Therefore, we have system of equations:

$$\begin{cases} v_0 + 3 = v_1 \\ \frac{v_0 + v_1}{2} = 5 \end{cases}$$

Substitute 1 to 2:

$$(v_0 + v_0 + 3) = 2 * 5$$

$$2v_0 = 10 - 3 \quad v_0 = 7/2$$

Answer: the initial velocity equals $7/2 \frac{\text{units}}{\text{second}}$.

Average velocity during 2 second equals:

$$v(2) = 2 + 3 * 2 = 8$$

And he moved with acceleration $a = 3$.

$$v_0 + 3 * 1 = v_1$$

v_0 - the initial velocity in 2nd second

v_1 - the final velocity in 2nd second

He moved with constant acceleration, so:

$$v(2) = \frac{v_0 + v_1}{2} = 8$$

Therefore, we have system of equations:

$$\begin{cases} v_0 + 3 = v_1 \\ \frac{v_0 + v_1}{2} = 8 \end{cases}$$

From second: $v_0 = 16 - v_1$

Substitute 1:

$$16 - v_1 + 3 = v_1$$

$$2v_1 = 19 \quad v_1 = 19/2$$

Answer: final velocity in 2 second equals $\frac{19}{2}$ *units* *second*