

Two infinite, uniformly charged, flat surfaces are mutually perpendicular. One of the sheets has a charge density of + 20.0 pC/m², and the other carries a charge density of -50.0 pC/m². What is the magnitude of the electric field at any point not on either surface?

Solution

We have the configuration of problem's system shows in picture, where $\sigma_1 = + 20.0 \text{ pC/m}^2$, $\sigma_2 = -50.0 \text{ pC/m}^2$.

At point not on either surface with coordinates (x, y) the surfaces with a charge density σ_1

creates the electric field $E_x = \frac{\sigma_1}{x}$, the surfaces with a charge density σ_2 creates the electric

field $E_y = \frac{\sigma_1}{y}$.

The electric field at point (x, y) is

$$\vec{E} = \vec{E}_y + \vec{E}_x = \frac{\sigma_1}{y} \vec{e}_y + \frac{\sigma_2}{x} \vec{e}_x$$

Where \vec{e}_y, \vec{e}_x are basis vectors of coordinate system.

From hence

$$E = \sqrt{E_y^2 + E_x^2} = \sqrt{\left(\frac{\sigma_1}{y}\right)^2 + \left(\frac{\sigma_2}{x}\right)^2}$$

Answer

$$E = \sqrt{E_y^2 + E_x^2} = \sqrt{\left(\frac{\sigma_1}{y}\right)^2 + \left(\frac{\sigma_2}{x}\right)^2}$$

$$\vec{E} = \vec{E}_y + \vec{E}_x = \frac{\sigma_1}{y} \vec{e}_y + \frac{\sigma_2}{x} \vec{e}_x,$$

Where $\sigma_1=+20.0 \text{ pC/m}^2$, $\sigma_2=-50.0 \text{ pC/m}^2$.