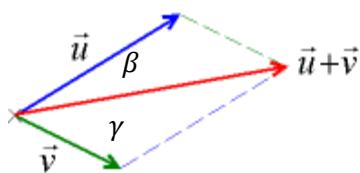
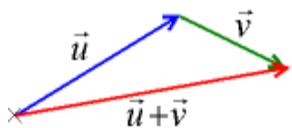


Question #27603

Two forces of 30N and 25N are acting on a particle at an angle of 30 degree between them. Find the magnitude of sum of the two forces and angle of resultant force with both smaller and larger vector?

Solution:

Let:



$$U = 30N$$

$$V = 25N$$

$$\alpha = 30^\circ$$

$$U + V = ?, \beta = ?, \gamma = ?$$

According to the parallelogram rule:

$$U + V = \sqrt{U^2 + V^2 + 2UV \cos \alpha}$$

$$U + V = \sqrt{30^2 + 25^2 + 2 * 30 * 25 * \cos 30^\circ} = 53.14 N$$

From triangle:

$$\beta = \frac{\alpha * \frac{V}{U}}{\frac{U}{V} + \frac{V}{U}} = 12.3^\circ$$

$$\gamma = \frac{\alpha * \frac{U}{V}}{\frac{U}{V} + \frac{V}{U}} = 17.7^\circ$$

Answer: the resultant force is 53.14N, the angle of resultant force with smaller vector is 17.7°, the angle of resultant force with larger vector is 12.3°.