

A wheel of mass of 30 kg and radius 1.5 m is rotating with an angular velocity of 280 rpm. Calculate the work that must be done to bring the wheel to rest in 15 seconds. What is the required average power?

$$w = 280 \text{ rpm} = 280 \text{ revolutions per minute}$$

Angular velocity is measured in International System of Units (SI) in $\frac{\text{rad}}{\text{second}}$:

$$w = 280 \text{ rpm} = 280 \frac{1}{\text{minute}} * \frac{2\pi}{60} \frac{\text{rad}}{\text{second}} * 60 \text{ seconds} = 2\pi * \frac{280}{60} \frac{\text{rad}}{\text{second}}$$

The energy conservation law:

$$\frac{Iw^2}{2} = A$$

I – moment of inertia of wheel

A - work that must be done to bring the wheel

For wheel

$$I = mr^2$$

m – mass of wheel

r – radius

Therefore:

$$A = \frac{mr^2w^2}{2} = \frac{30kg(1.5m)^2(280 * \frac{2\pi}{60})^2}{2} = 29017 \text{ J}$$

The average power equals:

$$P = \frac{A}{t} = \frac{29017 \text{ J}}{15 \text{ s}} = 1934 \text{ W}$$