

Derive an expression relating impulse and linear momentum. In a safety test, a car of mass 1000 kg is driven into a brick wall. Its bumper behaves like a spring ($k = 5 \times 10^6 \text{ Nm}^{-1}$) and is compressed by a distance of 3 cm as the car comes to rest. Determine the initial speed of the car.

Impulse \mathbf{J} produced from time t_1 to t_2 is defined to be:

$$\mathbf{J} = \int_{t_1}^{t_2} \mathbf{F} dt$$

where \mathbf{F} is the force applied from t_1 to t_2

From Newton's second law, force is related to momentum \mathbf{p} by:

$$\mathbf{F} = \frac{d\mathbf{p}}{dt}$$

Therefore:

$$\mathbf{J} = \int_{t_1}^{t_2} \mathbf{F} dt = \int_{t_1}^{t_2} \frac{d\mathbf{p}}{dt} dt = \int_{t_1}^{t_2} d\mathbf{p} = \Delta\mathbf{p}$$

The energy conservation law:

$$\frac{mv^2}{2} = \frac{k\Delta l^2}{2}$$

m – mass of car

v - initial speed of car

Δl – deformation of bumper

Therefore:

$$v = \sqrt{\frac{k\Delta l^2}{m}} = \sqrt{\frac{5 \times 10^6 \frac{N}{m} (0.03 \text{ m})^2}{1000 \text{ kg}}} = 2.12 \frac{m}{s}$$

Answer: the initial speed of the car equals $2.12 \frac{m}{s}$