

Question 27238

The density of wood is $\rho = 2 \frac{g}{ml} = 2000 \frac{kg}{m^3}$.

Usual weight is given by $P = mg = \rho g V$.

In case if body is immersed into fluid or gas, buoyancy force acts on this body vertically up. The value of this force is $F_b = \rho_{fluid} g V$, where ρ_{fluid} is the density of fluid, $g = 9.81 \frac{m}{s^2}$ is the gravitational constant and V is the volume of immersed part of the body. For water, $\rho_{water} = 1000 \frac{kg}{m^3}$.

The weight in water is the difference of weight $P = mg$ and buoyancy force:

$$P' = P - \rho_{water} g V = 9.81 m/s^2 \cdot (0.1 \cdot 0.1 \cdot 0.2) m^3 \cdot 2000 \frac{kg}{m^3} - 1000 \frac{kg}{m^3} \cdot 9.81 \frac{m}{s^2} \cdot (0.1 \cdot 0.1 \cdot 0.2) m^3 = 19.62 N$$

Hence, the weight of box in the water is $P' = 19.62 N$.