

Alpha-Centari, is located at a distance of 4.5 light years. What is the diameter of a reflecting telescope, placed in Earth's orbit, observed in visible light at 550nm, in order to resolve:

a- A planet orbiting its star at the same distance as Earth is from the sun.

b- A sun sized star.

c- Earth sized planet?

Solution

According to the theory of diffraction the angular resolution of telescope with an objective diameter D is

$$\alpha = 1.22 * \frac{\lambda}{D} * 206265' \text{ (in angular seconds)}$$

Where λ is wavelength of light

a) We have the angular distance between star and planet, if a planet orbiting its star at the same distance as Earth is from the sun and star is located at a distance of 4.5 light years = 284582 astronomical units, is

$$\alpha = \frac{1 \text{ a.u.}}{284582 \text{ a.u.}} * 206265' \approx 0.725'$$

From hence we have minimal diameter of telescope

$$D_{(a)\min} = \frac{1.22 * \lambda * 206265'}{\alpha} = \frac{1.22 * 550 \text{ nm} * 206265'}{\alpha} = 191 \text{ mm} \Rightarrow$$

$$D_a > 191 \text{ mm}$$

b) We have the angular size of star, if a star is like Sun (star radius is $6,9551 \cdot 10^8 \text{ m}$) and star is located at a distance of 4.5 light years = 284582 astronomical units $\approx 4.26 \cdot 10^{16} \text{ m}$, is

$$\alpha = \frac{6,9551 \cdot 10^8 \text{ m}}{4.26 \cdot 10^{16} \text{ m}} * 206265' \approx 0.0033'$$

From hence we have minimal diameter of telescope

$$D_{(b)\min} = \frac{1.22 * 550 \text{ nm} * 206265'}{0.0033'} \approx 41962 \text{ mm} \approx 42 \text{ m} \Rightarrow$$

$$D_b > 42 \text{ m}$$

c) We have the angular size of planet, if a planet is like Earth (Earth radius is $6,4 \cdot 10^6 \text{ m}$) and star is located at a distance of 4.5 light years = 284582 astronomical units $\approx 4.26 \cdot 10^{16} \text{ m}$, is

$$\alpha = \frac{6,410^6 \text{ m}}{4.26 \cdot 10^{16} \text{ m}} * 206265' \approx 0.00003'$$

From hence we have minimal diameter od telescope

$$D_{(c)\min} = \frac{1.22 * 550 \text{ nm} * 206265'}{0.00003'} \approx 4200 \text{ m} \Rightarrow$$

$$D_c > 4200 \text{ m}$$

Answer

a)

$$D_{(a)\min} = \frac{1.22 * \lambda * 206265'}{\alpha} = \frac{1.22 * 550 \text{ nm} * 206265'}{\alpha} = 191 \text{ mm} \Rightarrow$$

$$D_a > 191 \text{ mm}$$

b)

$$D_{(b)\min} = \frac{1.22 * 550 \text{ nm} * 206265'}{0.0033'} \approx 41962 \text{ mm} \approx 42 \text{ m} \Rightarrow$$

$$D_b > 42 \text{ m}$$

c)

$$D_{(c)\min} = \frac{1.22 * 550 \text{ nm} * 206265'}{0.00003'} \approx 4200 \text{ m} \Rightarrow$$

$$D_c > 4200 \text{ m}$$