

Question 26983

For the general case of motion over inclined plane without any force, except gravitational and force of friction: $N = mg \cos \phi$, $F = mg \sin \phi - F_f = mg \sin \phi - \mu mg \cos \phi$, where ϕ is the angle, μ is the friction coefficient.

Thus, using 2nd Newton's law, $a = \frac{F}{m} = g \sin \phi - \mu g \cos \phi$.

For two people sliding down the roof, $a_1 = g(\sin \phi - \mu_1 \cos \phi)$, $a_2 = g(\sin \phi - \mu_2 \cos \phi)$. Not knowing the angle, but knowing that $\mu_2 > \mu_1$, according to the latter formulas $a_2 < a_1$.

Let us assume that initial velocity of both is zero, so $S = 50 \text{ m} = \text{const} = \frac{a_1 t_1^2}{2} = \frac{a_2 t_2^2}{2}$, from where

$$\frac{t_1}{t_2} = \sqrt{\frac{a_2}{a_1}} < 1, \text{ so } t_2 > t_1, \text{ and second person will arrive at the bottom second.}$$

To explicitly calculate the times, one needs the value of the angle of inclined plane (roof).

In case if friction coefficients are equal ($\mu_1 = \mu_2$), formula

$a_1 = g(\sin \phi - \mu_1 \cos \phi)$, $a_2 = g(\sin \phi - \mu_2 \cos \phi)$ shows that accelerations will be equal. Hence, in this case if initial velocities were equal (or were both zero), persons will arrive at the bottom at the same time.