

QUESTION:

A running man has the half the kinetic energy of a boy of half his mass. the man speeds up by 1m/s and has the same kinetic energy as the boy. What were the original speed of the man and the boy?

SOLUTION:

The kinetic energy of a man is $E_{k,man} = \frac{m_{man}v_{man}^2}{2}$ The kinetic energy of a boy is

$E_{k,boy} = \frac{m_{boy}v_{boy}^2}{2} = \frac{m_{man}}{2} \cdot \frac{v_{boy}^2}{2} = \frac{m_{man}v_{boy}^2}{4}$. When man speeds up by a $\Delta v = 1 \text{ m/s}$, his kinetic energy is $E'_{k,man} = \frac{m_{man}(v_{man} + \Delta v)^2}{2}$

As a man has the half the kinetic energy of a boy:

$$E_{k,man} = \frac{1}{2}E_{k,boy}$$

And after speeding up man has the same kinetic energy as a boy:

$$E'_{k,man} = E_{k,boy}$$

Hence:

$$\begin{cases} \frac{m_{man}v_{man}^2}{2} = \frac{1}{2} \cdot \frac{m_{man}v_{boy}^2}{4} \\ \frac{m_{man}(v_{man} + \Delta v)^2}{2} = \frac{m_{man}v_{boy}^2}{4} \end{cases} \Rightarrow \begin{cases} v_{man}^2 = \frac{v_{boy}^2}{4} \\ (v_{man} + \Delta v)^2 = \frac{v_{boy}^2}{2} \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} v_{man} = \frac{v_{boy}}{2} \\ v_{man} + \Delta v = \frac{v_{boy}}{\sqrt{2}} \end{cases} \Rightarrow \begin{cases} v_{man} = \frac{v_{boy}}{2} \\ v_{boy} = \sqrt{2}(v_{man} + \Delta v) \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} v_{man} = \frac{\sqrt{2}(v_{man} + \Delta v)}{2} \\ v_{boy} = \sqrt{2}(v_{man} + \Delta v) \end{cases} \Rightarrow \begin{cases} 2v_{man} = \sqrt{2}(v_{man} + \Delta v) \\ v_{boy} = \sqrt{2}(v_{man} + \Delta v) \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} 2v_{man} - \sqrt{2}v_{man} = \sqrt{2}\Delta v \\ v_{boy} = \sqrt{2}(v_{man} + \Delta v) \end{cases} \Rightarrow \begin{cases} v_{man}(2 - \sqrt{2}) = \sqrt{2}\Delta v \\ v_{boy} = \sqrt{2}(v_{man} + \Delta v) \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} v_{man} = \frac{\sqrt{2}\Delta v}{2 - \sqrt{2}} \\ v_{boy} = \sqrt{2}(v_{man} + \Delta v) \end{cases} \Rightarrow \begin{cases} v_{man} = \frac{\sqrt{2}\Delta v}{2 - \sqrt{2}} \\ v_{boy} = \sqrt{2} \left(\frac{\sqrt{2}\Delta v}{2 - \sqrt{2}} + \Delta v \right) \end{cases} \Rightarrow$$

$$\Rightarrow \begin{cases} v_{man} = \frac{\sqrt{2}\Delta v}{2 - \sqrt{2}} \\ v_{boy} = \frac{2\sqrt{2}\Delta v}{2 - \sqrt{2}} \end{cases} \Rightarrow \Rightarrow \begin{cases} v_{man} = 2.414 \text{ m/s} \\ v_{boy} = 4.828 \text{ m/s} \end{cases}$$

ANSWER:

$$v_{man} = 2.414 \text{ m/s}$$

$$v_{boy} = 4.828 \text{ m/s}$$