

A string of length $2l$, obeying Hooke's law, is stretched so that its extension is l . The speed of transverse waves in the string is v . If the string is further stretched so that the extension becomes $4l$, what will be the speed of transverse waves in the string?

Solution

The phase velocity in the string is: $v = \sqrt{\frac{T}{\rho}}$

where T is a tension in the string, ρ is the linear mass density of the string.

In the first case:

$$T = k\Delta l = kl, \rho = \frac{m}{2l+l} = \frac{m}{3l} \rightarrow v = \sqrt{\frac{3kl^2}{m}}.$$

In the second case:

$$T = k\Delta l = k4l, \rho = \frac{m}{2l+4l} = \frac{m}{6l} \rightarrow v' = \sqrt{\frac{24kl^2}{m}}.$$

So

$$\frac{v'}{v} = \frac{\sqrt{\frac{24kl^2}{m}}}{\sqrt{\frac{3kl^2}{m}}} = \sqrt{\frac{24}{3}} = \sqrt{8} \rightarrow v' = \sqrt{8}v = 2\sqrt{2}v.$$

Answer: $2\sqrt{2}v$.