

Two similar wires made of the same material each of length 50cm and cross-sectional area 2mm². They are connected in series in an electric circuit to a battery of an internal resistance 0.5ohm. An electric current of 2A flows. When the wires are connected in parallel to the same battery the total current in the circuit increases to 6A: calculate the electromotive force of the battery used.

Solution

If the resistance of wire is R , resistance of battery is $r = 0.5\text{Ohm}$, electromotive force is E , we have resistance of R_1 when they are connected in series

$$R_1 = 2R + r$$

and electric current

$$I_1 = \frac{E}{R_1} = \frac{E}{2R + r}$$

We have resistance R_2 when wires are connected in parallel

$$R_2 = \frac{R * R}{2R} + r = \frac{R}{2} + r$$

and electric current

$$I_2 = \frac{E}{R_2} = \frac{E}{\frac{R}{2} + r}$$

Hence

$$\begin{aligned} \frac{I_2}{I_1} &= \frac{2R + r}{\frac{R}{2} + r} \Rightarrow \\ R &= \frac{I_2 r - I_1 r}{2I_1 - \frac{I_2}{2}} = 2\text{Ohm} \Rightarrow \\ E &= I_1 * (2R + r) = 9V \end{aligned}$$

Answer

$$E = I_1 * (2R + r) = 9V$$