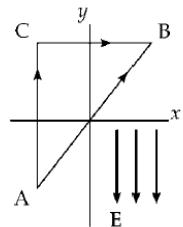


Condition:


Uniform electric field of magnitude $E = 325 \text{ V/m}$ is directed in the negative y direction in Figure. The coordinates of point A are $(-0.200, -0.300) \text{ m}$, and those of point B are $(0.400, 0.500) \text{ m}$. Calculate the electric potential difference between A and B.

Solution:

$$V_B - V_A = - \int_A^B E \cdot ds = - \int_A^C E \cdot ds - \int_C^B E \cdot ds$$

$$V_B - V_A = (-E \cos 180^\circ) \int_{-0.300}^{0.500} dy - (E \cos 90.0^\circ) \int_{-0.200}^{0.400} dx$$

$$V_B - V_A = (325)(0.800) = +260V$$

Answer: $V_B - V_A = +260V$.