

A cyclist travels 5.0 km [S] in 45 minutes, then travels 9.0 km [E] in 90 minutes. What is the cyclist's displacement and velocity?

Solution

The average velocity of a cyclist is

$$v = \frac{s_1+s_2}{t_1+t_2} = \frac{5 \text{ km} + 9 \text{ km}}{45 \text{ min} + 90 \text{ min}} = \frac{14 \text{ km}}{135 \text{ min}} = \frac{14000 \text{ m}}{135 \cdot 60 \text{ s}} = 1.7284 \frac{\text{m}}{\text{s}}$$

The cyclist's displacement is the vector sum of vectors \vec{s}_1 and \vec{s}_2 . Let's find it using Pythagorean theorem (because directions [S] and [E] are perpendicular).

$$S = \sqrt{s_1^2 + s_2^2} = \sqrt{5^2 + 9^2} = 10.2956 \text{ km}$$

We can find the direction of cyclist's displacement

$$\tan a = \frac{s_2}{s_1} = \frac{9}{5}; a = \tan^{-1} \frac{9}{5} = 61^\circ.$$

So the direction is 61° from south of east or $(90-61)=29^\circ$ from east of south.

Answer: 10.3 km in the direction 29° from east of south; $1.73 \frac{\text{m}}{\text{s}}$