

QUESTION:

Suppose a spring-mass system has 18Nm $k =$ and $m = 0.71\text{kg}$. The system is oscillating with an amplitude of 54 mm . (i) Determine the angular frequency of oscillation.

(ii) Obtain an expression for the velocity v of the block as a function of displacement, x and calculate v at $x = 34\text{ mm}$. (iii) Obtain an expression for the mass's distance $|x|$ from the equilibrium position as a function of the velocity v and calculate $|x|$ when $v = 0.18\text{ ms}^{-1}$. (iv) Calculate the energy of the spring-mass system.

SOLUTION:

$$\text{The angular frequency of oscillation } \omega = \sqrt{\frac{k}{m}} = 5.05 \frac{\text{rad}}{\text{s}}$$

$$\text{The velocity of the block is } v(t) = \frac{dx}{dt} = \frac{d}{dt}(x_0 \sin(\omega t + \phi_0)) = \omega x_0 \cos(\omega t + \phi_0)$$

Since $\cos^2 \alpha + \sin^2 \alpha = 1$, $x_0 \cos(\omega t + \phi_0) = x_0 \sqrt{1 - \sin^2(\omega t + \phi_0)} = \sqrt{x_0^2 - x(t)^2}$, therefore

$$v(t) = \omega \sqrt{x_0^2 - x(t)^2} . x_0 = 54\text{ mm} - \text{amplitude of oscillation}$$

$$\text{When } x = 34\text{ mm } v = \omega \sqrt{x_0^2 - x^2} = 0.2119\text{ m/s}$$

$$x(t) = x_0 \sin(\omega t + \phi_0) = x_0 \sqrt{1 - \cos^2(\omega t + \phi_0)} = x_0 \sqrt{1 - \left(\frac{v(t)}{\omega \cdot x_0}\right)^2}$$

When $v = 0.18\text{ m/s}$

$$x(t) = 40.56\text{ mm}$$

$$\text{The energy of the system is } E = \frac{k \cdot x_0^2}{2} = 0.0262\text{ J}$$