

Question 24490

The equations of motion of bullet are: $s_y = \frac{4}{5}v_0t - \frac{gt^2}{2}$; $s_x = \frac{3}{5}v_0t$, where v_0 is initial velocity to be found. The vertical coordinate of stone as a function of time is $s_y = h_0 - \frac{gt^2}{2}$. In order to hit the stone s_y of stone and bullet must be equal. This gives $\frac{4}{5}v_0t = h_0 - \frac{gt^2}{2}$ or $v_0t = 50$. Time to move to vertically maximum position is $t = \frac{4}{5} \frac{v_0}{g}$. Hence, plugging this into latter expression, obtain $v_0 = \frac{50 \cdot 5 \cdot g}{4v_0} \approx 63.7 \text{ m/s}$.