


what is malus law of polarization?

Malus's Law

According to malus, when completely plane polarized light is incident on the analyzer, the intensity I of the light transmitted by the analyzer is directly proportional to the square of the cosine of angle between the transmission axes of the analyzer and the polarizer.

$$\text{i.e } I \propto \cos^2 \theta$$

Polariser Axis

Suppose the angle between the transmission axes of the analyzer and the polarizer is θ . The completely plane polarized light from the polarizer is incident on the analyzer. If E_0 is the amplitude of the electric vector transmitted by the polarizer, then intensity I_0 of the light incident on the analyzer is $I \propto E_0^2$

The electric field vector E_0 can be resolved into two rectangular components i.e $E_0 \cos \theta$ and $E_0 \sin \theta$. The analyzer will transmit only the component (i.e $E_0 \cos \theta$) which is parallel to its transmission axis. However, the component $E_0 \sin \theta$ will be absorbed by the analyser. Therefore, the intensity I of light transmitted by the analyzer is,

$$I \propto (E_0 \cos \theta)^2$$

$$I / I_0 = (E_0 \cos \theta)^2 / E_0^2 = \cos^2 \theta$$

$$I = I_0 \cos^2 \theta$$

Therefore, $I \propto \cos^2 \theta$. This proves law of malus.

When $\theta = 0^\circ$ (or 180°), $I = I_0 \cos^2 0^\circ = I_0$ That is the intensity of light transmitted by the analyzer is maximum when the transmission axes of the analyzer and the polarizer are parallel.

When $\theta = 90^\circ$, $I = I_0 \cos^2 90^\circ = 0$ That is the intensity of light transmitted by the analyzer is minimum when the transmission axes of the analyzer and polarizer are perpendicular to each other.