

Task:

Superman ($m = 90 \text{ kg}$) jumps over a 50 m tall building by first accelerating from rest to his maximum velocity in 0.001 s . Subsequent to this time, Superman follows normal projectile motion. What is the average force acting on Superman that gives his upward acceleration?

Solution:

Suppose R is insignificant. Then $v_{0y} = v_0$, $v_{0x} = 0$, $H = 50 \text{ m}$, $t = 0.001 \text{ s}$

$$H = \frac{v_0^2}{2g}$$

$$v_0^2 = 2gH$$

$v_0 = \sqrt{2gH}$ – the minimal velocity required to jump over a building

Newton's second law:

$$\frac{dp}{dt} = \Sigma F$$

$$m \frac{dv}{dt} = \Sigma F$$

$$\frac{dv}{dt} = \frac{v_0 - 0}{t} = \frac{\sqrt{2gH}}{t}$$

Answer:

$$\Sigma F = m \frac{dv}{dt} = m \frac{\sqrt{2gH}}{t} = 90 \text{ kg} \cdot \frac{\sqrt{2 \cdot 9.81 \frac{\text{m}}{\text{s}^2} \cdot 50 \text{ m}}}{0.001 \text{ s}} \approx 2.819 \text{ MN}$$