

QUESTION:

An object is kept in front of concave mirror of $FL = 20\text{cm}$. The image is 3 times the size of the object find two possible DIS of object from the mirror.

SOLUTION:

(I guess that FL is focus length, the image is 3 times (larger, I think)) and DIS is distance)

The image provided by the concave mirror is magnified when

- a) Object is located between focal point and mirror (in this case image is virtual and upright)
- b) Object is located between focus and centre of curvature (image is real and vertically inverted)

Let's consider the first case:

$\frac{1}{d_{ob}} - \frac{1}{d_{im}} = \frac{1}{f}$ is the mirror equation (d_{ob} and d_{im} are the object and image distance respectively, $d_{im} < 0$ because the image is virtual).

The magnification is

$$m = \left| \frac{d_{im}}{d_{ob}} \right| = 3$$

Hence, $d_{im} = 3d_{ob}$ and:

$$\frac{1}{d_{ob}} - \frac{1}{3d_{ob}} = \frac{1}{f}$$

$$\frac{2}{3d_{ob}} = \frac{1}{f}$$

$$d_{ob} = \frac{2f}{3}$$

$$d_{ob} = 13.3 \text{ cm}$$

Let's consider the second case:

$\frac{1}{d_{ob}} + \frac{1}{d_{im}} = \frac{1}{f}$ is the mirror equation (d_{ob} and d_{im} are the object and image distance respectively, $d_{im} > 0$ because the image is real).

The magnification is

$$m = \left| \frac{d_{im}}{d_{ob}} \right| = 3$$

Hence, $d_{im} = 3d_{ob}$ and:

$$\frac{1}{d_{ob}} + \frac{1}{3d_{ob}} = \frac{1}{f}$$

$$\frac{4}{3d_{ob}} = \frac{1}{f}$$

$$d_{ob} = \frac{4f}{3}$$

$$d_{ob} = 26.7 \text{ cm}$$

ANSWER

13.3 cm and 26.7 cm