Task:

1. A baseball is thrown at $25 \mathrm{~m} / \mathrm{sec}$ at an angle of 30 degrees above the horizontal.
a) How far away does the ball land?
b) What is the maximum height reached?
2. A football is kicked at an angle 45 degrees above the horizontal. What is its initial speed if it covers 150 ft ?
3. A golf ball leaves a tee at $60 \mathrm{~m} / \mathrm{sec}$. and at an angle of 50 degrees above the horizontal. Find:
a) The total time of flight
b) The maximum height reached
c) The horizontal distance covered.

Solution:

1.

$v_{0}=25 \frac{\mathrm{~m}}{\mathrm{~s}}$
$\alpha=30^{\circ}$
$R=v_{0} \cos \alpha \cdot t$
$H=v_{0} \sin \alpha \cdot \frac{t}{2}-g \cdot \frac{\left(\frac{t}{2}\right)^{2}}{2}=\frac{v_{0}^{2} \sin ^{2} \alpha}{2 g}$
$t=\frac{R}{v_{0} \cos \alpha}$
$v_{0} \sin \alpha \cdot \frac{\left(\frac{R}{v_{0} \cos \alpha}\right)}{2}-g \cdot \frac{\left(\frac{\frac{v_{0} \cos \alpha}{2}}{2}\right)^{2}}{2}=\frac{v_{0}^{2} \sin ^{2} \alpha}{2 g}$
$R=55.175 \mathrm{~m}$
$H=\frac{v_{0}^{2} \sin ^{2} \alpha}{2 g}=7.964 \mathrm{~m}$
2.
$\alpha=45^{\circ}$
$R=150 \mathrm{ft}$
$R=v_{0} \cos \alpha \cdot t$
$H=v_{0} \sin \alpha \cdot \frac{t}{2}-g \cdot \frac{\left(\frac{t}{2}\right)^{2}}{2}=\frac{v_{0}^{2} \sin ^{2} \alpha}{2 g}$
$t=\frac{R}{v_{0} \cos \alpha}$
$v_{0} \sin \alpha \cdot \frac{\left(\frac{R}{v_{0} \cos \alpha}\right)}{2}-g \cdot \frac{\left(\frac{\frac{v_{0} \cos \alpha}{2}}{2}\right)^{2}}{2}=\frac{v_{0}^{2} \sin ^{2} \alpha}{2 g}$
$v_{0}=69.444 \frac{\mathrm{ft}}{\mathrm{s}}$
3.
$v_{0}=60 \frac{\mathrm{~m}}{\mathrm{~s}}$
$\alpha=50^{\circ}$
$R=v_{0} \cos \alpha \cdot t$
$H=v_{0} \sin \alpha \cdot \frac{t}{2}-g \cdot \frac{\left(\frac{t}{2}\right)^{2}}{2}=\frac{v_{0}^{2} \sin ^{2} \alpha}{2 g}$
$t=\frac{R}{v_{0} \cos \alpha}$
$v_{0} \sin \alpha \cdot \frac{\left(\frac{R}{v_{0} \cos \alpha}\right)}{2}-g \cdot \frac{\left(\frac{\frac{v_{0} \cos \alpha}{2}}{2}\right)^{2}}{2}=\frac{v_{0}^{2} \sin ^{2} \alpha}{2 g}$
$R=361.397 \mathrm{~m}$
$H=\frac{v_{0}^{2} \sin ^{2} \alpha}{2 g}=107.674 \mathrm{~m}$
$t=\frac{R}{v_{0} \cos \alpha}=9.371 \mathrm{~s}$

Answer:

1. a) $R=55.175 \mathrm{~m}$
b) $H=\frac{v_{0}^{2} \sin ^{2} \alpha}{2 g}=7.964 \mathrm{~m}$
2. $v_{0}=69.444 \frac{\mathrm{ft}}{\mathrm{s}}$
3. a) $t=\frac{R}{v_{0} \cos \alpha}=9.371 \mathrm{~s}$
b) $H=\frac{v_{0}^{2} \sin ^{2} \alpha}{2 g}=107.674 \mathrm{~m}$
c) $R=361.397 \mathrm{~m}$
