Task:

A football leaves the toe of a painter at $200 \mathrm{ft} / \mathrm{sec}$. and strikes the ground 500 ft . away.
a.) Determine its initial angle of projection
b.) Find the total time of flight
c.) Find the maximum height reached.

Solution:

$v_{0}=200 \frac{\mathrm{ft}}{\mathrm{s}}$
$R=500 f t$
$R=v_{0} \cos \alpha \cdot t$
$H=v_{0} \sin \alpha \cdot \frac{t}{2}-g \cdot \frac{\left(\frac{t}{2}\right)^{2}}{2}=\frac{v_{0}^{2} \sin ^{2} \alpha}{2 g}$
$\sin ^{2} \alpha=\left(v_{0} \sin \alpha \cdot \frac{t}{2}-g \cdot \frac{\left(\frac{t}{2}\right)^{2}}{2}\right) \cdot \frac{2 g}{v_{0}^{2}}=\left(v_{0} \sin \alpha \cdot t-g \cdot\left(\frac{t}{2}\right)^{2}\right) \cdot \frac{g}{v_{0}^{2}}$
$t=\frac{R}{v_{0} \cos \alpha}$
$\sin ^{2} \alpha=\left(v_{0} \sin \alpha \cdot \frac{R}{v_{0} \cos \alpha}-g \cdot\left(\frac{\frac{R}{v_{0} \cos \alpha}}{2}\right)^{2}\right) \cdot \frac{g}{v_{0}^{2}}=$
$=\left(\sin \alpha \cdot \frac{R}{\cos \alpha}-g \cdot\left(\frac{\frac{R}{v_{0} \cos \alpha}}{2}\right)^{2}\right) \cdot \frac{g}{v_{0}^{2}}=\left(\frac{\sin \alpha \cdot R}{\cos \alpha}-\frac{g \cdot R^{2}}{4 v_{0}^{2} \cos ^{2} \alpha}\right) \cdot \frac{g}{v_{0}^{2}}=$
$=\left(\frac{4 v_{0}^{2} \cdot \cos \alpha \cdot \sin \alpha \cdot R-g \cdot R^{2}}{4 v_{0}^{2} \cos ^{2} \alpha}\right) \cdot \frac{g}{v_{0}^{2}}=\frac{g \cdot R}{4 v_{0}^{4} \cos ^{2} \alpha} \cdot\left(4 v_{0}^{2} \cdot \cos \alpha \cdot \sin \alpha-g \cdot R\right)$
$\sin ^{2} \alpha=\frac{g \cdot R}{4 v_{0}^{4} \cos ^{2} \alpha} \cdot\left(4 v_{0}^{2} \cdot \cos \alpha \cdot \sin \alpha-g \cdot R\right)$
$\alpha_{1}=11.85^{\circ}, \quad \alpha_{2}=78.15^{\circ}$
$t_{1}=\frac{R}{v_{0} \cos \alpha_{1}}=2.554 \mathrm{~s}$
$t_{2}=\frac{R}{v_{0} \cos \alpha_{2}}=12.174 \mathrm{~s}$
$H_{1}=\frac{v_{0}^{2} \sin ^{2} \alpha_{1}}{2 g}=26.232 \mathrm{ft}$
$H_{2}=\frac{v_{0}^{2} \sin ^{2} \alpha_{2}}{2 g}=595.852 \mathrm{ft}$

Answer:

a) $\alpha_{1}=11.85^{\circ}, \alpha_{2}=78.15^{\circ}$
b) $t_{1}=\frac{R}{v_{0} \cos \alpha_{1}}=2.554 \mathrm{~s}$

$$
t_{2}=\frac{R}{v_{0} \cos \alpha_{2}}=12.174 \mathrm{~s}
$$

c) $H_{1}=\frac{v_{0}^{2} \sin ^{2} \alpha_{1}}{2 g}=26.232 \mathrm{ft}$

$$
H_{2}=\frac{v_{0}^{2} \sin ^{2} \alpha_{2}}{2 g}=595.852 \mathrm{ft}
$$

