Question \#23588

car travels between 2 stations .60 km apart. Left first station, accelerates
for 10.4 s at $1 \mathrm{~m} / \mathrm{s}^{\wedge} 2$ and travels @ a constant speed until nearing the second station, when it brakes at $2.0 \mathrm{~m} / \mathrm{s}^{\wedge} 2$ in order to stop at the station.
How long did this trip take

Solution:

Let:
$S=0.60 \mathrm{~km}=600 \mathrm{~m}$
$t_{1}=10.4 \mathrm{~s}$
$a_{1}=1 \mathrm{~m} / \mathrm{s}^{2}$
$a_{2}=2 \mathrm{~m} / \mathrm{s}^{2}$
$t=$?
$t=t_{1}+t_{c}+t_{2}$,
were t_{c} is the time of traveling with a constant speed, t_{2} is the time of braking
$t_{c}=\frac{S_{c}}{v}$
were S_{c} is the distance of traveling with a constant speed, v is the velocity
$v=a_{1} t_{1}$
$t_{2}=\frac{v}{a_{2}}=\frac{a_{1} t_{1}}{a_{2}}$
$S_{c}=S-\left(S_{1}+S_{2}\right)$
were S_{1} is the distance of traveling with accelration, S_{2} is the distance of braking
$S_{1}=\frac{1}{2} a_{1} t_{1}{ }^{2}$
$S_{2}=\frac{1}{2} a_{2} t_{2}^{2}=\frac{1}{2} a_{2}\left(\frac{a_{1} t_{1}}{a_{2}}\right)^{2}=\frac{a_{1}{ }^{2} t_{1}{ }^{2}}{2 a_{2}}$
$t_{c}=\frac{S-\left(\frac{1}{2} a_{1} t_{1}{ }^{2}+\frac{a_{1}{ }^{2} t_{1}{ }^{2}}{2 a_{2}}\right)}{a_{1} t_{1}}$
$t=t_{1}+\frac{S-\left(\frac{1}{2} a_{1} t_{1}{ }^{2}+\frac{a_{1}{ }^{2} t_{1}{ }^{2}}{2 a_{2}}\right)}{a_{1} t_{1}}+\frac{a_{1} t_{1}}{a_{2}}=10.4+\frac{600-\left(\frac{1}{2} 1 * 10.4^{2}+\frac{1^{2} 10.4^{2}}{2 * 2}\right)}{1 * 10.4}+\frac{1 * 10.4}{2}=65.5 \mathrm{~S}$
Answer: 65.5 s (or 1 m 5.5 s).

