

Calculate the ratio between the energy Q_1 required to boil off 10 kg of water at 100°C and energy Q_2 required to raise the temperature of 10kg of water from 0°C to 100°C . (Specific latent heat of vapourization of water is $22.5 * 100000 \text{ J/Kg}$, Specific heat capacity of water is $4200\text{J/Kg}^\circ\text{C}$.

We will use well known formulas for Q_1 and Q_2

$Q_1 = rm$, where r – specific latent heat vapourization of water, m is the mass of water
 $Q_2 = cm(t_2 - t_1)$, where c – specific heat capacity of water, $t_2 = 100^\circ\text{C}$, $t_1 = 0^\circ\text{C}$

$$\frac{Q_1}{Q_2} = \frac{rm}{cm(t_2 - t_1)} = \frac{r}{c(t_2 - t_1)} = \frac{22.5 * 10^5}{4200 * (100 - 0)} \approx 5.357$$