Task:

A clown pedals a unicycle applying an average torque of 7.50 Nm to its wheel. The wheel has a mass of 2.50 kg with an outside diameter of 0.600 m and an inside diameter of 0.525 m . The unicyclist and the unicycle have a combined mass of 90.0 kg . What is his translational and tangential acceleration? Be careful! Only the wheel's mass rotates but the total mass accelerates horizontally. [Answer: $0.285 \mathrm{~m} / \mathrm{s} 2$]

Solution:

$\tau_{\text {net }}=\frac{d L}{d t}=\frac{d I \omega}{d t}=\frac{I d \omega}{d t}=I \cdot \alpha=7.5 \mathrm{Nm}$
$I=\frac{1}{8}\left(m_{\text {wheel }}+m_{\text {unicyclist }}\right)\left(0.6^{2} \mathrm{~m}^{2}+0.525^{2} \mathrm{~m}^{2}\right)=\frac{1}{8} \cdot 90 \mathrm{~kg} \cdot 0.635625 \mathrm{~m}^{2}=$
$=7.15078125 \mathrm{~kg} \cdot \mathrm{~m}^{2}$
$\alpha=0.9534375 \frac{\mathrm{rad}}{\mathrm{s}^{2}}$
$\alpha=\frac{d \omega}{d t}=\frac{d \frac{v}{0.3}}{d t}=\frac{1}{0.3} \frac{d v}{d t}=\frac{1}{0.3} a_{t a n}$

$$
a_{t a n}=0.28603125 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

$$
a_{t a n}=a=0.28603125 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

Answer:

$$
a=0.28603125 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

