

Question 23382

1. Let oy axis has the same direction as \vec{g} . Then, y component of velocity $v_y(t) = v_0 + gt$, where $v_0 = 70 \frac{ft}{s} = 70 \cdot 0.3 \frac{m}{s} = 21 \frac{m}{s}$ and $g = 10 \frac{m}{s^2}$. Integrating formula for y component of velocity, obtain: $y(t) = -h + v_0 t + \frac{gt^2}{2}$, $h = 50 \text{ ft} = 15 \text{ m}$. For moment when stone stops: $0 = -h + v_0 t + \frac{gt^2}{2}$; $-15 + 21t + 5t^2 = 0 \Rightarrow t \approx 0.62 \text{ s}$. Hence, velocity at this moment is $v_y = 21 \frac{m}{s} + 10 \cdot 0.62 = 27.2 \frac{m}{s}$.

2. Let oy axis be vertically up.

Then, equations of motion are: $v_x(t) = v$; $v_y(t) = -gt$, $x(t) = vt$; $y(t) = h - \frac{gt^2}{2}$.

Let t_1 be the moment when water strikes the ground. For this moment,

$$h = \frac{gt_1^2}{2} \Rightarrow t_1 = \sqrt{2 \frac{h}{g}}$$
, when for x-component of motion $4 = vt_1 \Rightarrow v = \frac{4}{t_1} = \sqrt{8 \frac{g}{h}} \approx 7.3 \frac{m}{s}$.

Speed, when water strikes the ground is $v = \sqrt{v_x^2 + v_y^2} \Big|_{t=t_1} = \sqrt{v^2 + 2gh} = 9.13 \frac{m}{s}$. Initial speed is $v = 7.3 \frac{m}{s}$.