Find the magnitude of the gravitational force
a 68.1 kg person would experience while
standing on the surface of Earth with a
mass of $5.98 \times 1024 \mathrm{~kg}$ and a radius of
$6.37 \times 106 \mathrm{~m}$. The universal gravitational
constant is $6.673 \times 10-11 \mathrm{~N} \cdot \mathrm{~m} 2 / \mathrm{kg} 2$.
Answer in units of \mathbf{N}
$F=G \frac{m_{1} m_{2}}{r^{2}}-$ formula for the gravitation force where
$m_{1}=68.1 \mathrm{~kg}$
$m_{2}=5.98 \times 10^{24} \mathrm{~kg}$
$r=6.37 \times 10^{6} \mathrm{~m}$
$G=6.673 \times 10^{-11} \quad\left(N \times \frac{\mathrm{m}^{2}}{\mathrm{~kg}^{2}}\right)$
$F=6.673 \times 10^{-11} \frac{68.1 \times 5.98 \times 10^{24}}{\left(6.37 \times 10^{6}\right)^{2}}=669.71(\mathrm{~N})$

