Suppose you have a rectangular wooden block with dimensions $8.0 \mathrm{~cm} \times 8.0 \mathrm{~cm}$ $x 9.0 \mathrm{~cm}$ that has a density of $0.85 \times 10^{\wedge} 3 \mathrm{~kg} / \mathrm{m}^{\wedge} 3$. The block has a cylindrical hole inside it so that a lead cylinder 5.0 cm in diameter and 7.5 cm high can be fitted completely inside. What is the volume of the lead cylinder that fits inside (in $\mathrm{m}^{\wedge} 3$)? What is the mass of the lead cylinder if the density of lead is $1.13 \times 10^{\wedge} 4$? (Density $\mathrm{kg} / \mathrm{m}^{\wedge} 3$)? What is the volume of the wood in the wooden block (excluding the volume of the cylindrical hole)?

Solution:

Let:
$L=8 \mathrm{~cm}=0.08 \mathrm{~m}$
$B=8 \mathrm{~cm}=0.08 \mathrm{~m}$
$H=9 \mathrm{~cm}=0.09 \mathrm{~m}$
$D=5 \mathrm{~cm}=0.05 \mathrm{~m}$
$h=7.5 \mathrm{~cm}=0.075 \mathrm{~m}$
$\rho_{\text {lead }}=1.13 * 10^{4} \mathrm{~kg} / \mathrm{m}^{3}$

$$
\begin{aligned}
& m_{\text {lead }}=? \\
& V_{\text {wood }}=?
\end{aligned}
$$

The mass of lead is:
$m=\rho_{\text {lead }} * V_{\text {lead }}$, were $V_{\text {lead }}$ is the volume of the lead cylinder
$V_{\text {lead }}=\frac{1}{4} \pi D^{2} h$
$V_{\text {lead }}=\frac{1}{4} 3.142 * 0.05^{2} * 0.075=0.000147 \mathrm{~m}^{3}$
$m=11300 * 0.000147=1.664 \mathrm{~kg}$
The volume of the wood is:
$V_{\text {wood }}=V-V_{\text {lead }}$, were V is the volume of the rectangular block
$V=L * B * H$
$V_{\text {wood }}=L * B * H-V_{\text {lead }}$
$V_{\text {wood }}=0.08 * 0.08 * 0.09-0.000147=0.000429 m^{3}$

Answer:

The mass of lead is 1.664 kg , the volume of wood is $0.000429 \mathrm{~m}^{3}\left(429 \mathrm{~cm}^{3}\right)$.

