Condition:

I have been trying to figure this out: An object moves with constant acceleration $3.65 \mathrm{~m} / \mathrm{s} 2$ and over a time interval reaches a final velocity of $11.4 \mathrm{~m} / \mathrm{s}$.
(a) If its initial velocity is $5.7 \mathrm{~m} / \mathrm{s}$, what is its displacement during the time interval?
(b) What is the distance it travels during this interval?
(c) If its initial velocity is $-5.7 \mathrm{~m} / \mathrm{s}$, what is its displacement during the time interval?
(d) What is the total distance it travels during the interval in part (c)?

Solution

Assume that positive x -axis directed to the right
(a)(b)

$$
v=v_{0 \mathrm{o}}+a t
$$

$$
t=\frac{\left(v-v_{0 \mathrm{o}}\right)}{a}=\frac{(11.4-5.7)}{3.65}=1.56 \mathrm{~s}
$$

displacement $=$ distance $=v_{0 \text { o }} t+\frac{a t^{2}}{2}=5.7 * 1.56+\frac{3.65 * 1.56^{2}}{2}=8.892+4.44=13.332 \mathrm{~m}$ (from origin point - to theright)
(c)
$v=-v_{00}+a t$

$$
\begin{aligned}
& t_{1}=\frac{\left(0+v_{\mathrm{oo} 0}\right)}{a}=\frac{5.7}{3.65}=1.56 \mathrm{~s} . \\
& s_{1}={ }_{\mathrm{o}} \frac{v_{0}{ }^{2}}{2 a}=\frac{5.7^{2}}{2 * 3.65}=4.5 \mathrm{~m}(\text { to the left }) \\
& v=a * t_{2} \\
& t_{2}=\frac{v}{a}=\frac{11.4}{3.65}=3.12 \mathrm{~s} . \\
& s_{2}=\frac{a t_{2}^{2}}{2}=3.65 * \frac{3.12^{2}}{2}=17.77 \mathrm{~m}(\text { to the } \mathrm{right}) \\
& \quad \text { Displacement }=17.77-4.5=13.27 \mathrm{~m}
\end{aligned}
$$

(d)

$$
\text { Distance }=4.5+17.77=22.27 \mathrm{~m}
$$

Answers: a,b: displacement = distance=13.332 m; c: Displacement $=13.27 \mathrm{~m}$; d: Distance $=22.27 \mathrm{~m}$.

