Question 23049

$$A = 0.17 \, m$$
, $T = 0.84 \, s$.

The frequency, by definition $v = \frac{1}{T} = \frac{1}{0.84 \, s} \approx 1.2 \, s^{-1}$.

The angular frequency is by definition, $\omega = \frac{2\pi}{T} = 7.48 \, s^{-1}$.

General expression for displacement

$$x = A\sin(\omega t + \delta)$$
, $v = \dot{x} = A\omega\cos(\omega t + \delta)$, $a = \dot{v} = -A\omega^2\sin(\omega t + \delta)$

 $x = A\sin(\omega t + \delta)$, $v = \dot{x} = A\omega\cos(\omega t + \delta)$, $a = \dot{v} = -A\omega^2\sin(\omega t + \delta)$. Maximum values for displacement, velocity and acceleration are 0.17; 1.27; 9.51 respectively.