Task:

1. You're riding a unicorn at $25 \mathrm{~m} / \mathrm{s}$ and come to a uniform stop at a red light 20 m away. What's your acceleration?

Solution:

Due to Newton's second law:
$\sum F=m a$
$a=\frac{\sum F}{m}$
$a=\dot{v}$
$v=\int a d t=a t+v_{0}$
$t=\left(\frac{v-v_{0}}{a}\right)$
$v=\dot{s}$
$s=\int v d t=\int\left(a t+v_{0}\right) d t=\frac{a t^{2}}{2}+v_{0} t+s_{0}=\frac{a\left(\frac{v-v_{0}}{a}\right)^{2}}{2}+v_{0}\left(\frac{v-v_{0}}{a}\right)+s_{0}=$
$=\frac{v^{2}-2 v v_{0}+v_{0}{ }^{2}}{2 a}+\frac{v v_{0}-v_{0}{ }^{2}}{a}+s_{0}=\frac{v^{2}-v_{0}{ }^{2}}{2 a}+s_{0}$
Given:
$s=20 m$,
$v_{0}=25 \frac{\mathrm{~m}}{\mathrm{~s}}$
$s_{0}=0 m$
$v=0 \frac{\mathrm{~m}}{\mathrm{~s}}$
$20 m=-\frac{\left(25 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{2 a}$
$a=-\frac{\left(25 \frac{m}{s}\right)^{2}}{20 \mathrm{~m}}=-31.25 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

Answer:

$a=-31.25 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$

