Task:

Calculate the moment of a uniform solid cone about an axis through its centre. The cone has mass m and altitude H, the radius of circular base is R ?

Solution:

Split the cone into disks with thickness $d h$. Radius of such disk:
$r=\frac{R h}{H}$,
R - the radius of circular base,
H - altitude,
h - distance between the top of the cone and the disk.

$$
\begin{aligned}
& d m=\rho V=\rho \cdot \pi r^{2} d h ; \\
& d J=\frac{1}{2} r^{2} d m=\frac{1}{2} \pi \rho r^{4} d h=\frac{1}{2} \pi \rho\left(\frac{R h}{H}\right)^{4} d h ; \\
& J=\int_{0}^{H} d J=\frac{1}{2} \pi \rho\left(\frac{R}{H}\right)^{4} \int_{0}^{H} h^{4} d h=\left.\frac{1}{2} \pi \rho\left(\frac{R}{H}\right)^{4} \frac{h^{5}}{5}\right|_{0} ^{H}= \\
& \quad=\frac{1}{10} \pi \rho R^{4} H=\left(\rho \cdot \frac{1}{3} \pi R^{2} H\right) \frac{3}{10} R^{2}=\frac{3}{10} m R^{2} .
\end{aligned}
$$

Answer:

$J=\frac{3}{10} m R^{2}$

