Condition:

By trial and error, a frog learns that it can leap a maximum horizontal distance of 1.5 m . If, in the course of an hour, the frog spends 33% of the time resting and 67% of the time performing identical jumps of that maximum length, in a straight line, what is the distance traveled by the frog?

Solution:

Let's find time per jump $=T$.
Frog's leap can be considered as a motion of projectile. For a maximum horizontal distance frog must leap at angle of 45° to horizontal. So,
time per jump $T=\frac{2 v_{y}}{g}$,
horizontal distance $S=v_{x} T$ and $v_{x}=v_{y}$ for angle of 45°
We have $T=\frac{2 v_{y}}{g}=\frac{2 v_{x}}{g}=\frac{2 S}{g T} \rightarrow T=\sqrt{\frac{2 S}{g}}=\sqrt{2 * \frac{1.5}{9.8}}=0,55 \mathrm{~s}$
Jumps per hour if jumping 100% of the time $=\frac{60 \mathrm{~min}}{T}$
Total distance per hour if jumping 100% of the time $=($ Jumps per hour $) \times$ (distance per jump)
$=\left(\frac{60 \mathrm{~min}}{T}\right) *(1.5 m)$
Now multiply this quantity by 67% (since the frog jumps only 67% of the time)
So, total distance $=0.67 *\left(60 \frac{\mathrm{~min}}{\mathrm{~T}}\right) *(1.5 \mathrm{~m})=0.67 *\left(\frac{3600 \mathrm{~s}}{0,55 \mathrm{~s}}\right) * 1.5 \mathrm{~m}=6578 \mathrm{~m} \approx 6.6 \mathrm{~km}$

Answer: total distance $\approx 6.6 \mathrm{~km}$.

