Task:

What is the vertical acceleration in projectile motion?

Solution:

The horizontal velocity remains constant during the course of the trajectory and the vertical velocity changes by $9.8 \mathrm{~m} / \mathrm{s}$ every second. These same two concepts could be depicted by a table illustrating how the x - and y-component of the velocity vary with time.

Time	Horizontal Velocity	Vertical Velocity
0 s	$20 \mathrm{~m} / \mathrm{s}$, right	0
1 s	$20 \mathrm{~m} / \mathrm{s}$, right	$9.8 \mathrm{~m} / \mathrm{s}$, down
2 s	$20 \mathrm{~m} / \mathrm{s}$, right	$19.6 \mathrm{~m} / \mathrm{s}$, down
3 s	$20 \mathrm{~m} / \mathrm{s}$, right	$29.4 \mathrm{~m} / \mathrm{s}$, down
4 s	$20 \mathrm{~m} / \mathrm{s}$, right	$39.2 \mathrm{~m} / \mathrm{s}$, down
5 s	$20 \mathrm{~m} / \mathrm{s}$, right	$49.0 \mathrm{~m} / \mathrm{s}$, down

The numerical information in both the diagram and the table above illustrate identical points - a projectile has a vertical acceleration of $9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$, downward and no horizontal acceleration. This is to say that the vertical velocity changes by $9.8 \mathrm{~m} / \mathrm{s}$ each second and the horizontal velocity never changes. This is indeed consistent with the fact that there is a vertical force acting upon a projectile but no horizontal force. A vertical force causes a vertical acceleration in this case, gravitational acceleration of $9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$.

Answer:

The vertical acceleration in projectile motion is gravitational acceleration of $9.8 \mathrm{~m} / \mathrm{s} / \mathrm{s}$

