A raft is constructed of wood having a density of $452.0 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$. The surface area of the bottom of the raft is $5.4 \mathrm{~m}^{2}$, and the volume of the raft is $0.51 \mathrm{~m}^{3}$. When the raft is placed in fresh water having density $1.0 \cdot 10^{3} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}$, how deep is the bottom of the raft below water level?

Solution.

$$
\rho_{w}=1.0 \cdot 10^{3} \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}, \rho_{r}=452.0 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}, S=5.4 \mathrm{~m}^{2}, V_{r}=0.51 \mathrm{~m}^{3} ;
$$

Newton's second law in vector form:

$$
m \vec{a}=\vec{B}+m \vec{g} .
$$

A raft is at rest, then:

$$
\begin{gathered}
\vec{a}=0 . \\
0=\vec{B}+m \vec{g}
\end{gathered}
$$

Projection on Y:

$$
\begin{gathered}
0=B-m g \\
B=m g
\end{gathered}
$$

B - a buoyancy force.
m - a mass of a raft.

$$
m=\rho_{r} V_{r}
$$

ρ_{r} - the density of a raft.
V_{r} - a volume of a raft.

$$
B=\rho_{w} V g ;
$$

ρ_{w} - the density of a water;
V - a part of volume of a raft below water level.

$$
V=S h ;
$$

h - a high of the bottom of the raft below water level.

$$
\begin{gathered}
\rho_{w} V g=m g ; \\
\rho_{w} V=m ; \\
\rho_{w} S h=\rho_{r} V_{r} ; \\
h=\frac{\rho_{r} V_{r}}{\rho_{w} S} \\
h=\frac{452.0 \cdot 0.51}{1.0 \cdot 10^{3} \cdot 5.4}=0.043(\mathrm{~m}) .
\end{gathered}
$$

Answer: $h=0.043 \mathrm{~m}$.

