assuming no sliding and that the shoulder is 1.2 m from the feet, what force is reqiuered to topple a 70 kg person standing with his feet spread 0.9 m ? and can i have an explanation for the answer?

Solution

Make sketch:

Assuming that the toppling force is horizontal ant applied from the side.
Weight of the person is:

$$
W=m * g=70 \mathrm{~kg} * 9.81 \mathrm{~N} / \mathrm{kg}=686.7 \mathrm{~N}
$$

For point A: The torque caused by weight is:

$$
\tau_{W}=W * l_{W}
$$

Where l_{W} is :

$$
l_{W}=0.9 / 2=0.45 \mathrm{~m}
$$

The torque caused by your force is:

$$
\tau_{F}=F * l_{F}
$$

Where

$$
l_{F}=1.2 \mathrm{~m}
$$

So force required to topple person is:

$$
\begin{gathered}
\tau_{F}=\tau_{W} \\
F * l_{F}=W * l_{W} \\
F=W * l_{W} / l_{F}
\end{gathered}
$$

Calculating:

$$
F=686.7 * 0.45 / 1.2=257.5 \mathrm{~N}
$$

Answer: 257.5 N

