Task:

There is a ladder 4 m high which is placed against a wall with its foot at an angle of 30 degrees to the horizontal. Calculate the force exerted by the wall on the ladder?

Solution:

$$
\begin{aligned}
& \mathbf{N}_{2}+\mathbf{F}_{\mathrm{Tp}}+\mathbf{F}+\mathbf{N}_{1}=0 . \\
& \mathrm{N}_{2 \mathrm{x}}+\mathrm{F}_{\mathrm{Tpx}}+\mathrm{F}_{\mathrm{x}}+\mathrm{N}_{1 \mathrm{x}}=0, \\
& \mathrm{~N}_{2 \mathrm{y}}+\mathrm{F}_{\mathrm{Tpy}}+\mathrm{F}_{\mathrm{y}}+\mathrm{N}_{1 \mathrm{y}}=0 . \\
& \mathrm{N}_{2 \mathrm{x}}=0, \mathrm{~F}_{\mathrm{rpx}}=\mathrm{F}_{\mathrm{Tp}}, \mathrm{~F}_{\mathrm{x}}=0, \mathrm{~N}_{1 \mathrm{x}}=-\mathrm{N}_{1}, \\
& \mathrm{~N}_{2 \mathrm{y}}=\mathrm{N}_{2}, \mathrm{~F}_{\mathrm{rpy}}=0, \mathrm{~F}_{\mathrm{v}}=-\mathrm{F}, \mathrm{~N}_{1 \mathrm{y}}=0 . \\
& \mathrm{F}_{\mathrm{Tp}}-\mathrm{N}_{1}=0, \mathrm{~F}_{\mathrm{Tp}}=\mathrm{k} \mathrm{~N}_{2} \\
& \mathrm{~N}_{2}-\mathrm{F}=0 . \\
& \mathrm{k} \mathrm{~N}_{2}-\mathrm{N}_{1}=0, \mathrm{~N}_{2}=\frac{\mathrm{N}_{1}}{\mathrm{k}} \\
& \frac{\mathrm{~N}_{1}}{\mathrm{k}}-\mathrm{F}=0, \mathrm{~N}_{1}=\mathrm{k} \mathrm{~F}
\end{aligned}
$$

N_{1}, N_{2} - reactive forces,
$F_{\text {тр }}$ - force of friction, F - weight of the ladder,
k - coefficient of friction between the ladder and the floor

Answer:

$$
N_{1}=k F
$$

