A bucket of mass 1.40 kg is whirled in a vertical circle of radius 1.10 m . At the lowest point of its motion the tension in the rope supporting the bucket is 25.0 N .
a) Find the speed of the bucket.
b) How fast must the bucket move at the top of the circle so that the rope does not go slack?

Solution.

$$
\begin{gathered}
m=1.40 \mathrm{~kg}, r=1.10 \mathrm{~m}, F_{t}=25.0 \mathrm{~N} \\
\boldsymbol{v}_{\boldsymbol{1}}-? \boldsymbol{v}_{\mathbf{2}}-?
\end{gathered}
$$

a) Find the speed of the bucket.

Newton's second law in vector form:

$$
m \overrightarrow{a_{1}}=\overrightarrow{F_{t 1}}+m \vec{g} .
$$

Projection on OY:

$$
m a_{1}=F_{t 1}-m g ;
$$

The acceleration due to change in the direction is:

$$
\begin{gathered}
a_{1}=\frac{v_{1}^{2}}{r} ; \\
m \frac{v_{1}^{2}}{r}=F_{t 1}-m g \\
v_{1}=\sqrt{r\left(\frac{F_{t 1}}{m}-g\right)} ;
\end{gathered}
$$

$$
v_{1}=\sqrt{1.10\left(\frac{25}{1.40}-9.8\right)}=2.98\left(\frac{m}{s}\right)
$$

b) How fast must the bucket move at the top of the circle so that the rope does not go slack?

Newton's second law in vector form:

$$
m \overrightarrow{a_{2}}=\overrightarrow{F_{t 2}}+m \vec{g} .
$$

Projection on OY:

$$
\begin{gathered}
m a_{2}=F_{t 2}+m g \\
F_{t 2}=0 \\
m a_{2}=m g \\
a_{2}=g
\end{gathered}
$$

The acceleration due to change in the direction is:

$$
\begin{gathered}
a_{2}=\frac{v_{2}^{2}}{r} \\
v_{2}=\sqrt{r g} \\
v_{2}=\sqrt{1.10 \cdot 9.8}=3.28\left(\frac{\mathrm{~m}}{\mathrm{~s}}\right) .
\end{gathered}
$$

Answer:

a) $v_{1}=2.98 \frac{\mathrm{~m}}{\mathrm{~s}}$.
b) $v_{2}=3.28 \frac{\mathrm{~m}}{\mathrm{~s}}$.

