A particle of mass m moves io a circle of radius r. Its velocity v=k(s)^1/2. Calculate force on the particle.

Solution

we are given:

m , r , $v = k(s)^{(1/2)}$. For a circular motion: The acceleration due to change in the direction is: 0

$$a = \frac{v^2}{r}$$

According to the Second Newton's Law:

F = m * aThus:

$$F = m * a = \frac{m * v^2}{r} = \frac{m * (k(s)^{(1/2)})^2}{r} = mk^2 \frac{|s|}{r}$$

Answer: $F = mk^2 \frac{|s|}{r}$

references:

<u>http://en.wikipedia.org/wiki/Circular_motion#Formulas_for_uniform_circular_motion</u>
<u>http://en.wikipedia.org/wiki/Newton%27s_laws_of_motion#Newton.27s_second_law</u>