Task:

A penguin is held under the surface of seawater by a tension of 0.18 pounds. His density is 1.8 slugs per cubic foot. What is his volume?

Solution:

Assuming Archimedes' principle to be reformulated as follows,

 $F_A = \rho g V,$ 1.8 slugs per cubic foot = $\frac{1.8 \cdot 14.593903 \text{ kg}}{0.3048^3 \text{ m}^3} = 927.682 \frac{kg}{\text{m}^3}$

 $0.18 \text{ pounds} = 0.18 \cdot 0.45359237 \text{ kg} = 0.082 \text{ kg}$

As penguin is held under the surface of seawater $F_A = tension + penguin's weight$

$$F_A = 0.082 \ kg \cdot 9.81 \frac{N}{kg} + penguin's \ weight$$

penguin's weight = $927.682 \frac{kg}{m^3} \cdot V$

$$1030 \ \frac{kg}{\mathrm{m}^3} \cdot 9.81 \frac{N}{kg} \cdot V = 0.082 \ kg \cdot 9.81 \frac{N}{kg} + 927.682 \frac{kg}{\mathrm{m}^3} \cdot V$$

 $V = 0.0000876597 \text{ m}^3 = 0.00309567 \text{ ft}^3$

Answer:

 $V = 0.00309567 \text{ ft}^3$