

Task:

A string of natural length L extends to a new length L_1 under tensile force F . If Hooke's Law applies, what is the work done in stretching the spring?

Solution:

A horizontal spring exerts a force $\mathbf{F}=(kx, 0, 0)$ that is proportional to its deflection in the x direction. The work of this spring on a body moving along the space curve

$\mathbf{s}(t) = (x(t), y(t), z(t))$, is calculated using its velocity, $\mathbf{v}=(v_x, v_y, v_z)$, to obtain

$$W = \int_0^t \mathbf{F} \cdot \mathbf{v} dt = \int_0^t kxv_x dt = \frac{1}{2}kx^2.$$

For convenience, consider contact with the spring occurs at $t = 0$, then the integral of the product of the distance x and the x -velocity, xv_x , is $(1/2)x^2$.

The function $U(x) = 1/2 kx^2$ is called the potential energy of a linear spring.

Given:

$$x = L_1 - L,$$

$$W = \frac{1}{2}k(L_1 - L)^2$$

Answer:

$$W = \frac{1}{2}k(L_1 - L)^2$$