A 0.5 kg piece of metal $(\mathrm{c}=600 / \mathrm{kgK})$ at 300 degree celcius is dumped into a large pool of water at 20 degrees Celcius. Assuming the change in temperature of water to be negligible, calculate the overall change in entropy for the system

Solution:

We assume that piece of metal undergoes an internally reversible heat transfer such that $d S=$ $\frac{d Q}{T}=\frac{m c d T}{T}$. The assumption that piece of metal has a constant heat capacity allows us to integrate this equation giving $0 \Delta S=m c \ln \left(\frac{T 2}{T 1}\right)$. In this calculation the temperature must be in kelvins. We can apply this equation to piece of metal, here using units of kelvins for the heat capacity.

$$
\Delta S_{1}=0.5 \mathrm{~kg} * 600 \frac{\mathrm{~J}}{\mathrm{kgK}} * \ln \frac{293 \mathrm{~K}}{573 \mathrm{~K}}=-201,24 \frac{\mathrm{~J}}{\mathrm{~K}}
$$

Assuming the change in temperature of water to be negligible, we can calculate change in entropy for the large pool of water
$d S=\frac{d Q}{T}->\Delta S_{2}=\left[\frac{Q}{T}=\frac{m c \boxtimes T}{T 2}\right.$,

$$
\Delta S_{2}=0.5 \mathrm{~kg} * 600 \frac{\mathrm{~J}}{\mathrm{kgK}} * \frac{(300-20) \mathrm{K}}{293 \mathrm{~K}}=286,68 \frac{\mathrm{~J}}{\mathrm{~K}}
$$

where $\Delta \boxtimes Q$ is the amount of heat received from the piece of metal
The overall change in entropy for the system is simply the sum of these two entropy changes.

$$
\Delta S=\Delta S_{1}+\Delta S_{2}=-201,24 \frac{\mathrm{~J}}{\mathrm{~K}}+286,68 \frac{\mathrm{~J}}{\mathrm{~K}}=85,44 \frac{\mathrm{~J}}{\mathrm{~K}} .
$$

Answer : $\Delta S=85,44 \frac{\mathrm{~J}}{\mathrm{~K}}$.

