Question 21562

The amplitude $A=0.17 \mathrm{~m}$, period $T=0.84 \mathrm{~s}$.
By definition, angular frequency $\omega=\frac{2 \pi}{T}=7,48 \frac{1}{s}$, and frequency is equal to $v=\frac{1}{T}=1.19 \frac{1}{s}$.

The expression for displacement is a sine or cosine wave, with given parameters. Let us choose cosine function:

$$
x(t)=A \cos (\omega t+\delta)=0.17 \cos (7.48 t+\delta)
$$

Velocity and acceleration are first and second derivatives of displacement respectively.

Hence,
Velocity: $v=\dot{x}=-A \omega \sin (\omega t+\delta)=-1.27 \sin (7.48 t+\delta)$, and
Acceleration: $\quad a=\ddot{x}=-A \omega^{2} \cos (\omega t+\delta)=9.51 \cos (7,48 t+\delta)$.

