A tank 5 m high is half filled with water and then is filled to the top with oil of density 0.85 g cm cube. What is the pressure at the bottom of the tank due to these liquid?

Solution:

Pressure at the bottom of the tank $(P)=$ pressure by water level + pressure by the oil $=$ $h_{1} d_{1} g+h_{2} d_{2} g$.
Given that

$$
\begin{gathered}
h_{1}=h_{2}=2.5 \mathrm{~m} \\
d_{1}=1000 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
d_{2}=850 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
g=9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \\
P=9.8 *(1000 * 2.5+850 * 2.5) \stackrel{ }{=} P=45325 \mathrm{~Pa} \approx 4.5 \mathrm{kPa} .
\end{gathered}
$$

Answer: $P \approx 4.5$ kPa.

