## Task:

From $t=0$ to $t=4.70 \mathrm{~min}$, a man stands still, and from $t=4.70 \mathrm{~min}(282 \mathrm{~s})$ to $\mathrm{t}=9.40 \mathrm{~min}$, he walks briskly in a straight line at a constant speed of $2.95 \mathrm{~m} / \mathrm{s}$. What is his average speed in the time interval 2.00 min to 6.70 min ?

## Solution:

$v_{\text {avg }}=\frac{s}{t}$
The average speed in the time interval $2.00 \mathrm{~min}(120 \mathrm{~s})$ to $6.70 \mathrm{~min}(402 \mathrm{~s})$ :
$v_{a v g}=\frac{s(402 s)-s(120 s)}{402 s-120 s}$
$s(402 s)=v_{\text {const }} \cdot(402 \mathrm{~s}-282 \mathrm{~s})=2.95 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 120 s=354 m$
$s(120 s)=0 m$
$v_{\text {avg }}=\frac{s(402 s)-s(120 s)}{402 s-120 s}=\frac{354 m}{282 s}=1.255 \frac{\mathrm{~m}}{\mathrm{~s}}$

## Answer:

$$
v_{\text {avg }}=1.255 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

