Task:

A projectile is launched horizontally with the velocity of $30 \frac{\mathrm{~m}}{0.001 \mathrm{~s}}=30000 \frac{\mathrm{~m}}{\mathrm{~s}}$. What is the magnitude of the vertical component of velocity after 3 milliseconds? What is the magnitude of the vertical component of velocity after 1 second?

Solution:

$h(t)=\frac{g \cdot t^{2}}{2}=\frac{v_{y}(t)^{2}}{2 g}$
$v_{y}(0.003 \mathrm{~s})=\sqrt{g^{2} \cdot t^{2}}=g \cdot t=9.81 \cdot 0.003 \frac{\mathrm{~m}}{\mathrm{~s}}=0.02943 \frac{\mathrm{~m}}{\mathrm{~s}}$
$v_{y}(1 \mathrm{~s})=\sqrt{g^{2} \cdot t^{2}}=g \cdot t=9.81 \cdot 1 \frac{\mathrm{~m}}{\mathrm{~s}}=9.81 \frac{\mathrm{~m}}{\mathrm{~s}}$

Answer:

$v_{y}(0.003 \mathrm{~s})=0.02943 \frac{\mathrm{~m}}{\mathrm{~s}}$
$v_{y}(1 \mathrm{~s})=9.81 \frac{\mathrm{~m}}{\mathrm{~s}}$

