A 12 kg red ball travels with a velocity of $7 \mathrm{~m} / \mathrm{s}$ towards a 8 kg blue ball that is traveling a a speed of $10 \mathrm{~m} / \mathrm{s}$ in the opposite direction. What is the velocity of the blue ball after collision if the velocity of the red ball after collision is $5 \mathrm{~m} / \mathrm{s}$? (The balls have changed direction.)

Solution:

X

Set OX as positive direction.
We are given:

$$
\begin{gathered}
m_{\text {red }}=12 \mathrm{~kg} \\
m_{\text {blue }}=8 \mathrm{~kg} \\
v_{\text {red } 1}=7 \frac{\mathrm{~m}}{\mathrm{~s}} \\
v_{\text {blue } 1}=-10 \frac{\mathrm{~m}}{\mathrm{~s}} \\
v_{\text {red } 2}=-5 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

According to the linear momentum conservation principle:

$$
m_{\text {red }} * v_{\text {red } 1}+m_{\text {blue }} * v_{\text {blue } 1}=m_{\text {red }} * v_{\text {red } 2}+m_{\text {blue }} * v_{\text {blue } 2}
$$

Thus:

$$
v_{\text {blue } 2}=\frac{m_{r e d} * v_{\text {red } 1}+m_{\text {blue }} * v_{\text {blue } 1}-m_{r e d} * v_{\text {red } 2}}{m_{\text {blue }}}
$$

Calculating:

$$
v_{\text {blue } 2}=\frac{12 * 7+8 *(-10)-12 *(-5)}{8}=\mathbf{8} \frac{\boldsymbol{m}}{\boldsymbol{s}}
$$

Answer: $8 \mathrm{~m} / \mathrm{s}$

