Problem:

Rory, Aurora and Raoul are three lions fighting over a piece of meat of mass 12 kg . Each lion exerts a horizontal pull. Rory pulls with a force of 800 N. Aurora, who is 120 degrees to Rory's right, exerts a force of 400 N . Raoul is 140 degrees to Rory's left. The meat accelerates in Rory's direction.
(a) Find the force which Raoul is exerting.
(b) Find the magnitude of the acceleration.

Solution:

Let
$m=12 \mathrm{~kg}$ - mass of meat;
$F_{1}=800 N ; F_{2}=400 \mathrm{~N}$-Rory's and Aurora's pull force;
According to second Newton's law:

$$
\left\{\begin{array}{cl}
O X: & F_{1}-F \cos 40^{\circ}-F_{2} \cos 60^{\circ}=m a \\
& O Y: F \sin 40^{\circ}=F_{2} \sin 60^{\circ}
\end{array}\right.
$$

Thus,

$$
\begin{gathered}
F=\frac{F_{2} \sin 60^{\circ}}{\sin 40^{0}}=\frac{400 * 0.87}{0.64}=539 \mathrm{~N} \\
a=\frac{F_{1}-F \cos 40^{\circ}-F_{2} \cos 60^{\circ}}{m}=\frac{800-539 * 0.77-400 * 0.5}{12}=15.4\left[\mathrm{~m} / \mathrm{s}^{2}\right]
\end{gathered}
$$

Answer: $F=539 \mathrm{~N} ; a=15.4\left[\mathrm{~m} / \mathrm{s}^{2}\right]$.

