Problem:

A ball moving with speed v collides with a horizontal smooth surface at an angle theta with normal to surface as shown in the figure. If coefficient of restitution is ' e ' , then find velocity after it re-bounces making same angle theta with the normal.

Solution:

Coefficient of restitution can be defined as (for example, for ball, bouncing from the floor):

$$
e=\frac{v_{\text {Yfinal }}}{v_{y}}
$$

and(as the surface is smooth with no friction):

$$
v_{x}=v_{X f i n a l}=v \cos \theta
$$

Where $v_{\text {Yfinal }}, v_{y}=v \sin \theta-$ projections of final and initial velocities on axis OY;
$v_{X f i n a l}, v_{x}$ - projections of final and initial velocities on axis OX;
Thus,

$$
v_{\text {final }}=\sqrt{v_{X f \text { inal }}^{2}+v_{Y \text { final }}{ }^{2}}=\sqrt{v_{x}^{2}+\left(e v_{y}\right)^{2}}=v \sqrt{\sin ^{2} \theta+e^{2} \cos ^{2} \theta}
$$

Answer: $v_{f i n a l}=v \sqrt{\sin ^{2} \theta+e^{2} \cos ^{2} \theta}$.

