Question\#20400
a student mixes 1.0 L of water at 40 degree Celsius with 1.0 L of ethyl alcohol at 20 degree Celsius. if heat exchange is limited to the mixture what is the final temperature of the mixture?.

Solution:

Let:
$V_{1}=1 L=1000 \mathrm{~cm}^{3}$
$V_{2}=1 L=1000 \mathrm{~cm}^{3}$
$T_{1}=40^{\circ} \mathrm{C}$
$T_{2}=20^{\circ} \mathrm{C}$
$T_{m}-? ~ t h e ~ t e m p e r a t u r e ~ o f ~ t h e ~ m i x t u r e ~$
The temperature of water is more on it water gives heat.

Write an equation of thermal balance:
$V_{1} * c_{\text {water }} *\left(T_{1}-T_{m}\right)=V_{2} * c_{\text {alcohol }} *\left(T_{m}-T_{2}\right)$
Were:
$c_{\text {water }}$ - is the volumetric heat capacity of the water,
$c_{\text {alcohol }}$ - is the volumetric heat capacity of the ethyl alcohol.
$T_{m}=\frac{V_{1} c_{\text {water }} T_{1}+V_{2} c_{\text {alcohol }} T_{2}}{V_{1} c_{\text {water }}+V_{2} c_{\text {alcohol }}}$
$c_{\text {water }}=4.1796 \mathrm{~J} / \mathrm{cm}^{3} * \mathrm{~K}$
$c_{a l c o h o l}=1.925 \mathrm{~J} / \mathrm{cm}^{3} * \mathrm{~K}$
$T_{m}=\frac{1000 * 4.1796 * 40+1000 * 1.925 * 20}{1000 * 4.1796+1000 * 1.925}=33.7^{\circ} \mathrm{C}$
Answer: $33.7{ }^{\circ} \mathrm{C}$

